Что такое термистор (терморезистор)

Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры. Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.

Существует два типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.

Термистор PTC работает немного по-другому. Когда температура увеличивается, сопротивление увеличивается, а когда температура уменьшается, сопротивление уменьшается. Этот тип термистора обычно используется в качестве предохранителя.

Как правило, термистор достигает высокой точности в ограниченном температурном диапазоне около 50ºC относительно целевой температуры. Этот диапазон зависит от базового сопротивления.

Термистор на схеме

Что такое термистор (терморезистор)

Стрелка Т обозначает, что сопротивление является переменным в зависимости от температуры. Направление стрелки или полосы не имеет значения.

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры.

Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения. Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

История термистора

Майкл Фарадей — английский ученый впервые открыл понятие термисторов в 1833 году, сообщая о полупроводниковом поведении сульфида серебра. Благодаря своим исследованиям он заметил, что устойчивость к сульфидам серебра снижалась с повышением температуры. Это открытие впоследствии привело к коммерческому производству термисторов в 1930-х годах, когда Сэмюэль Рубен изобрел первый коммерческий термистор. С тех пор технология улучшилась; прокладывать дорогу к совершенствованию производственных процессов; наряду с доступностью более качественного материала.

Как работает термистор

Термистор на самом деле ничего не «читает», вместо этого сопротивление термистора меняется в зависимости от температуры. Степень изменения сопротивления зависит от типа материала, используемого в термисторе.

В отличие от других датчиков, термисторы являются нелинейными, то есть точки на графике, представляющие взаимосвязь между сопротивлением и температурой, не будут образовывать прямую линию. Расположение линии и степень ее изменения определяется конструкцией термистора. Типичный график термистора выглядит следующим образом:

График зависимости сопротивления от температуре на термисторе

Как изменение сопротивления преобразуется в измеримые данные, будет подробно рассмотрено ниже.

Разница между термистором и другими датчиками

В дополнение к термисторам используются несколько других типов датчиков температуры. Наиболее распространенными являются резистивные датчики температуры (RTD) и интегральные схемы (IC), такие как типы LM335 и AD590. Какой датчик лучше всего подходит для конкретного использования, зависит от многих факторов. В приведенной ниже таблице дано краткое сравнение преимуществ и недостатков каждого из них.

ПараметрТермисторRTDLM335AD592
Разница температурВ пределах ~ 50° С от заданной центральной температурыОт −260° C до + 850° C  От −40° C до + 100° C  От -20° C до + 105° C  
Относительная стоимость  НедорогойСамый дорогойДорогойДорогой
Постоянная времениОт 6 до 14 секундОт 1 до 7 секундОт 1 до 3 секундОт 2 до 60 секунд
СтабильностьОчень стабильный, 0,0009° C~0.05° С~0.01° С~0.01° С
Чувствительность  ВысокоНизкийНизкийНизкий
Преимущества  Долговечный
Долгоиграющий
Высокочувствительный
Маленький размер
Самая низкая
СтоимостьЛучше всего подходит для измерения температуры в одной точке  
Лучшее время отклика
Линейный выход
Самый широкий диапазон рабочих температур
Лучше всего для измерения диапазона температур  
Умеренно дорого
Линейный выход  
Умеренно дорого
Линейный выход  
НедостаткиНелинейный выход
Ограниченный температурный диапазон
Медленное время отклика  
Дорого
Низкая чувствительность  
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер  
Самое медленное время отклика
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер  

Температурный диапазон: приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.

Относительная стоимость: относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.

Постоянная времени: приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.

Стабильность: способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.

Чувствительность: степень реакции на изменение температуры.

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа.

Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Термисторный чип обычно монтируется на печатной плате (PCB). Существует много, много разных форм термисторов, и некоторые примеры:

На рисунке разные типы и формы термисторов

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Какое сопротивление термистора и ток смещения следует использовать

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре окружающей среды, которая считается 25° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, как определено производителем. Они должны быть определены до выбора датчика. Поэтому важно знать следующее.

Каковы максимальные и минимальные температуры для устройства

Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от температуры окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов работают лучше всего в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, то есть значения температуры и сопротивления изображены на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры регистрируются неправильно. Например, очень небольшие изменения при очень высоких температурах будут регистрировать незначительные изменения сопротивления, которые не приведут к точным изменениям напряжения.

Каков оптимальный диапазон термисторов

В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором небольшие изменения температуры точно регистрируются.

В таблице ниже приведены наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.

Что такое термистор (терморезистор)

Лучше всего выбрать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором TCS10K5 10 кОм длины волны. В TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 до 1° C, и 43 мВ / °C в диапазоне от 25 до 26 ° C, и 14 мВ ° C в диапазоне от 49 до 50 ° C. C.

Каковы верхний и нижний пределы напряжения на входе датчика регулятора температуры

Пределы напряжения обратной связи датчика к регулятору температуры устанавливаются производителем. В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения того, какой ток смещения необходим. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

V = I BIAS x R

Где: 
V — напряжение, в вольтах (В) 
BIAS — ток, в амперах или амперах (A) 
BIAS — постоянный ток, 
R — сопротивление, в Ом (Ом)

Контроллер генерирует ток смещения для преобразования сопротивления термистора в измеряемое напряжение. Контроллер принимает только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические помехи на нижнем конце не мешали считыванию, и не должно превышать 5 В для считывания.

Предположим, что используется вышеуказанный контроллер и термистор 100 кОм, такой как TCS651 длины волны, и температура, которую необходимо поддерживать устройству, составляет 20° C. Согласно спецификации TCS651, сопротивление составляет 126700 Ом при 20 ° C. Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома, чтобы решить для I BIAS , мы знаем следующее:

V / R = I BIAS

0,25 / 126700 = 2 мкА — нижний 
предел диапазона 5,0 / 126700 = 39,5 мкА — верхний предел

Да, этот термистор будет работать, если ток смещения регулятора температуры можно установить в диапазоне от 2 мкА до 39,5 мкА.

При выборе термистора и тока смещения лучше всего выбрать тот, в котором развиваемое напряжение находится в середине диапазона. Входной сигнал обратной связи контроллера должен быть под напряжением, которое выводится из сопротивления термистора.

Поскольку люди наиболее легко относятся к температуре, сопротивление часто нужно менять на температуру. Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.

Что такое термистор (терморезистор)

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

comments powered by HyperComments
Оценки статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...