Что такое транзистор Дарлингтона, конфигурации и применение

В данной статье мы подробно поговорим про транзистор Дарлингтона и пару Шиклаи-Дарлингтона. Разберем принцип работы, доступные конфигурации, а так же применение транзистора Дарлингтона.

Описание и принцип работы

Транзистор Дарлингтона названный в честь его изобретателя, Сиднея Дарлингтона является особым расположением двух стандартных NPN или PNP биполярных транзисторов, соединенных между собой. Эмиттер одного транзистора соединен с базой другого, чтобы создать более чувствительный транзистор с гораздо большим коэффициентом усиления по току, полезный в приложениях, где требуется усиление или переключение тока.

Пары транзисторов Дарлингтона могут быть изготовлены из двух индивидуально подключенных биполярных транзисторов или из одного устройства, имеющегося в продаже в одной упаковке со стандартом: соединительные провода базы, эмиттера и коллектора, и доступны в широком разнообразии стилей корпуса и напряжения (и тока) рейтинги в версиях NPN и PNP.

Биполярный переходный транзистор может работать как выключатель ВКЛ-ВЫКЛ, как показано на рисунке.

Биполярный транзистор как переключатель

Когда база NPN-транзистора заземлена (0 вольт) и ток базы отсутствует, Ib не течет, ток не течет от эмиттера к коллектору, и поэтому транзистор переключается в положение «ВЫКЛ». Если база смещена в прямом направлении более чем на 0,7 В, ток будет течь от эмиттера к коллектору, и транзистор, как говорят, будет включен «ВКЛ». При работе в этих двух режимах транзистор работает как переключатель.

Проблема здесь заключается в том, что транзисторная база должна переключаться между нулем и некоторым большим положительным значением, чтобы транзистор насыщался, и в этот момент повышенный базовый ток Ib протекает в устройство, в результате чего ток коллектора Ic становится большим, а Vce маленьким. , Тогда мы можем видеть, что небольшой ток на базе может контролировать намного больший ток, протекающий между коллектором и эмиттером.

Отношение тока коллектора к базовому току ( β ) известно как коэффициент усиления тока транзистора. Типичное значение β для стандартного биполярного транзистора может находиться в диапазоне от 50 до 200 и варьируется даже между транзисторами с одинаковым номером детали. В некоторых случаях, когда коэффициент усиления по току одного транзистора слишком мал для прямого управления нагрузкой, одним из способов увеличения коэффициента усиления является использование пары Дарлингтона.

Конфигурация транзистора Дарлингтона, также известная как «Дарлингтона пара» или «супер-альфа — цепь», состоит из двух NPN или PNP транзисторов , соединенных между собой таким образом , что ток эмиттера первого транзистора TR 1 становится базовым током второго транзистора TR 2 . Затем транзистор TR1 подключается как повторитель эмиттера, а TR2 — общий усилитель эмиттера, как показано ниже.

Также обратите внимание, что в этой конфигурации пары Дарлингтона ток коллектора ведомого или управляющего транзистора, TR1 , «синфазен» с током главного переключающего транзистора TR2 .

Базовая конфигурация транзистора Дарлингтона

Базовая конфигурация транзистора Дарлингтона

Используя пару NPN Дарлингтона в качестве примера, коллекторы двух транзисторов соединены вместе, а эмиттер TR 1 управляет основанием TR 2 . В этой конфигурации достигается умножение на β, потому что для базового тока i b ток коллектора равен β * i b, где коэффициент усиления по току больше единицы или равен единице, и это определяется как:

коэффициент усиления по току

Но базовый ток I B2 равен току эмиттера транзистора TR1 , I E1, поскольку эмиттер TR1 подключен к базе TR2 . Следовательно:

базовый ток

Затем подставим в первое уравнение:

усиление по току

Где β 1 и β 2 — коэффициенты усиления тока отдельных транзисторов.

Это означает, что общее усиление тока β определяется коэффициентом усиления первого транзистора, умноженным на коэффициент усиления второго транзистора, когда коэффициенты усиления тока двух транзисторов умножаются. Другими словами, пара биполярных транзисторов, объединенных вместе для создания одной пары транзисторов Дарлингтона, может рассматриваться как один транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Пример транзистора Дарлингтона

Два NPN-транзистора соединены вместе в виде пары Дарлингтона для переключения галогенной лампы 12 В 75 Вт. Если коэффициент усиления прямого тока первого транзистора равен 25, а коэффициент усиления прямого тока (бета) второго транзистора равен 80. Игнорируя любые падения напряжения на двух транзисторах, рассчитайте максимальный базовый ток, необходимый для полного включения лампы.

Сначала ток, потребляемый лампой, будет равен току коллектора второго транзистора, затем:

ток, потребляемый лампой, будет равен току коллектора второго транзистора

Используя приведенное выше уравнение, базовый ток определяется как:

базовый ток

Затем мы видим, что очень маленький базовый ток, всего 3,0 мА, такой как ток, подаваемый цифровым логическим вентилем или выходным портом микроконтроллера, может использоваться для включения и выключения лампы мощностью 75 Вт и «ВЫКЛ». ,

Если два одинаковых биполярных транзистора используются для создания одного устройства Дарлингтона, то β 1 равно β 2, и общее усиление тока будет иметь вид:

общее усиление тока

Обычно значение β 2 намного больше, чем значение 2β , и в этом случае его можно игнорировать, чтобы немного упростить математику. Тогда окончательное уравнение для двух идентичных транзисторов, сконфигурированных как пара Дарлингтона, можно записать в виде:

Идентичные транзисторы Дарлингтона

Тогда мы можем видеть , что для двух одинаковых транзисторов, β 2 используется вместо р , действующей как один большой транзистор с огромным количеством выгоды. Легко доступны пары транзисторов Дарлингтона с усилением тока более тысячи с максимальными токами коллектора в несколько ампер. Например: NPN TIP120 и его PNP эквивалентны TIP125 .

Преимущество использования такого устройства, как это, заключается в том, что переключающий транзистор гораздо более чувствителен, поскольку для переключения значительно большего тока нагрузки требуется только небольшой базовый ток, так как типичное усиление конфигурации Дарлингтона может превышать 1000, тогда как обычно одиночный ступень транзистора дает усиление от 50 до 200.

Затем мы видим, что пара Дарлингтона с коэффициентом усиления 1000: 1 может переключать выходной ток 1 А в цепи коллектор-эмиттер с входным базовым током всего 1 мА. Тогда это делает транзисторы Дарлингтона идеальными для взаимодействия с реле, лампами и двигателями с микроконтроллером малой мощности, компьютером или логическими контроллерами, как показано на рисунке.

Применение транзисторов Дарлингтона

Применение транзисторов Дарлингтона

База транзистора Дарлингтона достаточно чувствительна, чтобы реагировать на любой небольшой входной ток от коммутатора или непосредственно от логического элемента КМОП TTL или 5 В. Максимальный ток коллектора Ic (max) для любой пары Дарлингтона такой же, как и для основного переключающего транзистора, TR 2,поэтому его можно использовать для управления реле, двигателями постоянного тока, соленоидами и лампами и т. Д.

Одним из основных недостатков пары транзисторов Дарлингтона является минимальное падение напряжения между базой и эмиттером при полном насыщении. В отличие от одного транзистора, у которого падение напряжения насыщения составляет от 0,3 В до 0,7 В при полном включении, устройство Дарлингтона имеет удвоенное падение напряжения базового эмиттера (1,2 В вместо 0,6 В), поскольку падение напряжения базового эмиттера является сумма падений диодов базового эмиттера двух отдельных транзисторов, которая может составлять от 0,6 до 1,5 В в зависимости от тока через транзистор.

Такое высокое падение напряжения на базе эмиттера означает, что транзистор Дарлингтона может нагреваться сильнее, чем обычный биполярный транзистор, для данного тока нагрузки и, следовательно, требует хорошего отвода тепла. Кроме того, транзисторы Дарлингтона имеют более медленное время отклика ВКЛ-ВЫКЛ, поскольку ведомому транзистору TR 1 требуется больше времени, чтобы главный транзистор TR 2 полностью или полностью включился.

Чтобы преодолеть медленный отклик, повышенное падение напряжения и тепловые недостатки стандартного транзисторного устройства Дарлингтона , дополнительные транзисторы NPN и PNP могут использоваться в одной и той же каскадной схеме для создания транзистора Дарлингтона другого типа, называемого конфигурацией Шиклая .

Транзисторная пара Шиклаи (Sziklai)

Шиклаи — Дарлингтон пара, названный в честь его изобретателя Джорджи Шиклаи, является вспомогательным или соединением Дарлингтона устройства , которое состоит из отдельного NPN и PNP комплементарных транзисторов , соединенных между собой , как показано ниже.

Эта каскадная комбинация транзисторов NPN и PNP имеет то преимущество, что пара Шиклая выполняет ту же основную функцию пары Дарлингтона, за исключением того, что для ее включения требуется только 0,6 В, и, как и в стандартной конфигурации Дарлингтона, коэффициент усиления по току равен β 2для одинаково согласованных транзисторов или задается произведением двух коэффициентов усиления тока для несогласованных отдельных транзисторов.

Конфигурация транзистора Шиклаи — Дарлингтон

Конфигурация транзистора Шиклаи - Дарлингтон

Мы можем видеть, что падение напряжения базы-эмиттера устройства Шиклаи равно падению диода одного транзистора в тракте сигнала. Тем не менее, конфигурация Шиклаи не может насытить менее одного полного падения напряжения на диоде, то есть 0,7 В вместо обычных 0,2 В.

Кроме того, как и в случае пары Дарлингтона, пара Шиклая имеет более медленное время отклика, чем один транзистор. Комплементарные парные транзисторы Шиклая обычно используются в двухтактных выходных каскадах аудиоустройства класса AB, допускающих только одну полярность выходного транзистора. Обе пары транзисторов Дарлингтона и Шиклая доступны как в конфигурации NPN, так и в конфигурации PNP.

Транзисторные ИС Дарлингтона

В большинстве электронных приложений управляющей цепи достаточно для непосредственного переключения выходного напряжения или тока постоянного тока «ВКЛ» или «ВЫКЛ», поскольку для некоторых выходных устройств, таких как светодиоды или дисплеи, требуется лишь несколько миллиампер для работы при низких напряжениях постоянного тока, и поэтому они могут управляться непосредственно выходом стандартного логического элемента.

Однако, как мы видели выше, иногда для работы устройства вывода, такого как двигатель постоянного тока, требуется больше энергии, чем может быть обеспечено обычным логическим вентилем или микроконтроллером. Если цифровое логическое устройство не может подавать достаточный ток, то для управления устройством потребуются дополнительные схемы.

Одним из таких широко используемых транзисторных чипов Дарлингтона является массив ULN2003 . Семейство массивов Дарлингтона состоит из ULN2002A, ULN2003A и ULN2004A, которые представляют собой высоковольтные и сильноточные массивы Дарлингтона, каждый из которых содержит семь пар Дарлингтона с открытым коллектором в одном пакете ИС.

Каждый канал массива рассчитан на 500 мА и может выдерживать пиковые токи до 600 мА, что делает его идеальным для управления небольшими двигателями или лампами или затворами и базами мощных полупроводников. Дополнительные диоды подавления включены для индуктивного управления нагрузкой, и входы прикреплены напротив выходов, чтобы упростить соединения и расположение платы.

ULN2003A Дарлингтонский транзисторный массив

ULN2003A является недорогим однополярным транзистором Дарлингтона массива с высокой эффективностью и низкое потребление энергии , что делают его полезным для приведения в движение широкого диапазона нагрузок , включая электромагниты, реле постоянного тока двигателя и светодиодные дисплеи или лампы накаливания. ULN2003A содержит семь пар транзисторов Дарлингтона, каждая с входным контактом слева и выходным контактом справа от него, как показано.

ULN2003A Транзисторная матрица Дарлингтона

ULN2003A Транзисторная матрица Дарлингтона

Драйвер Дарлингтона ULN2003A имеет чрезвычайно высокий входной импеданс и коэффициент усиления по току, который может управляться напрямую от логического элемента CMOS TTL или + 5V. Для логики CMOS + 15 В используйте ULN2004A, а для более высоких коммутирующих напряжений до 100 В лучше использовать массив Дарлингтона SN75468.

Когда на вход (контакты 1–7) подается «ВЫСОКИЙ», соответствующий выход переключит «НИЗКИЙ» ток утечки. Аналогично, когда вход приводится в действие «НИЗКИЙ», соответствующий выход переключается в состояние высокого импеданса. Это состояние с высоким импедансом «ВЫКЛ» блокирует ток нагрузки и снижает ток утечки через устройство, повышая эффективность.

Контакт 8 (GND) подключен к заземлению нагрузки или 0 вольт, а контакт 9 (Vcc) подключен к источнику питания нагрузки. Затем любая нагрузка должна быть подключена между + Vcc и выходным контактом, контактами 10-16. Для индуктивных нагрузок, таких как двигатели, реле, соленоиды и т. Д., Контакт 9 всегда должен быть подключен к Vcc.

ULN2003A способен коммутировать 500 мА (0,5 А) на канал, но если требуется больше возможностей переключения тока, то и входы, и выходы пар Дарлингтона могут быть параллельны друг другу для более высокой способности тока. Например, входные контакты 1 и 2 соединены вместе, а выходные контакты 16 и 15 соединены вместе для переключения нагрузки.

Резюме транзистора Дарлингтона

Дарлингтона транзистор является наивысшей мощности полупроводниковое устройство с отдельными тока и напряжения рейтинги во много раз выше , чем обычных небольших плоскостных транзисторов сигнала.

Значения коэффициента усиления постоянного тока для стандартных транзисторов NPN или PNP большой мощности относительно низкие, вплоть до 20 или даже меньше, по сравнению с транзисторами с малым сигналом переключения. Это означает, что для переключения данной нагрузки требуются большие базовые токи.

В схеме Дарлингтона используются два транзистора вплотную, один из которых является основным токонесущим транзистором, а другой, являющийся гораздо меньшим «переключающим» транзистором, обеспечивает базовый ток для управления главным транзистором. В результате меньший базовый ток может использоваться для переключения гораздо большего тока нагрузки, поскольку коэффициенты усиления постоянного тока двух транзисторов умножаются вместе. Тогда комбинация из двух транзисторов может рассматриваться как один единственный транзистор с очень высоким значением β и, следовательно, с высоким входным сопротивлением.

Наряду со стандартными парами транзисторов PNP и NPN Дарлингтона имеются также дополнительные транзисторы Шиклай Дарлингтона, которые состоят из отдельных согласующих транзисторов NPN и PNP, соединенных вместе в одной и той же паре Дарлингтона для повышения эффективности.

Также доступны массивы Дарлингтона, такие как ULN2003A, которые позволяют безопасно управлять мощными или индуктивными нагрузками, такими как лампы, соленоиды и двигатели, с помощью микропроцессорных и микроконтроллерных устройств в роботизированных и мехатронных приложениях.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

comments powered by HyperComments
Оценки статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...