Что такое кварцевый генератор, принцип работы и схемы

В данной статье мы подробно поговорим про кварцевый генератор, опишем принцип его работы, эквивалентную модель кварцевого кристалла, сравним с генератором Колпитца, а так же рассмотрим модель генератора Пирса. В конце статьи поговорим про микропроцессорные генераторы.

Описание и принцип работы

Некоторые из факторов, которые влияют на стабильность частоты генератора, как правило, включают в себя: изменения температуры, изменения нагрузки, а также изменения напряжения питания постоянного тока и многое другое.

Стабильность частоты выходного сигнала может быть значительно улучшена путем правильного выбора компонентов, используемых для резонансной цепи обратной связи, включая усилитель. Но есть предел стабильности, который можно получить из обычных контуров резервуаров LC и RC.

кварцевый  генератор

Чтобы получить очень высокий уровень стабильности генератора, кварцевый кристалл обычно используется в качестве устройства для определения частоты для создания осциллятора другого типа, известного как кварцевый генератор.

Когда источник напряжения подается на небольшой тонкий кусочек кристалла кварца, он начинает менять форму, создавая характеристику, известную как пьезоэлектрический эффект. Этот пьезоэлектрический эффект является свойством кристалла, посредством которого электрический заряд создает механическую силу, изменяя форму кристалла, и наоборот, механическая сила, приложенная к кристаллу, создает электрический заряд.

Затем пьезоэлектрические устройства могут быть классифицированы как преобразователи, поскольку они преобразуют энергию одного вида в энергию другого (электрическую в механическую или механическую в электрическую). Этот пьезоэлектрический эффект создает механические колебания или колебания, которые можно использовать для замены стандартной цепи LC- бака в предыдущих генераторах.

Существует множество различных типов кристаллических веществ, которые можно использовать в качестве осцилляторов, причем наиболее важными из них для электронных схем являются минералы кварца, что отчасти объясняется их большей механической прочностью.

Кристалл кварца, используемый в кварцевом генераторе, представляет собой очень маленький, тонкий кусок или пластину из резаного кварца с металлизацией двух параллельных поверхностей для обеспечения требуемых электрических соединений. Физический размер и толщина кусочка кварцевого кристалла строго контролируются, поскольку он влияет на конечную или основную частоту колебаний. Основная частота обычно называется характеристической частотой кристаллов.

После резки и формирования кристалл не может быть использован на любой другой частоте. Другими словами, его размер и форма определяют его основную частоту колебаний.

Характеристика или характерная частота кристаллов обратно пропорциональна его физической толщине между двумя металлизированными поверхностями. Механически вибрирующий кристалл может быть представлен эквивалентной электрической цепью, состоящей из низкого сопротивления R, большой индуктивности L и небольшой емкости C, как показано ниже.

Эквивалентная модель кварцевого кристалла

Эквивалентная модель кварцевого кристалла

Эквивалентная электрическая схема для кварцевого кристалла показывает последовательную RLC- схему, которая представляет механические колебания кристалла параллельно с емкостью Cp, которая представляет электрические соединения с кристаллом. Кварцевые генераторы имеют тенденцию работать в направлении своего «последовательного резонанса».

Эквивалентный импеданс кристалла имеет последовательный резонанс, где Cs резонирует с индуктивностью Ls на рабочей частоте кристаллов. Эта частота называется частотой серии кристаллов ƒs. Наряду с этой последовательной частотой существует вторая частотная точка, созданная в результате параллельного резонанса, создаваемого, когда Ls и Cs резонируют с параллельным конденсатором Cp.

Кристаллический импеданс против частоты

Кристаллический импеданс против частоты

Наклон импеданса кристаллов выше показывает, что по мере увеличения частоты на его клеммах, на определенной частоте взаимодействие между последовательным конденсатором Cs и индуктором Ls создается последовательный резонансный контур, снижающий импеданс кристаллов до минимума и равный Rs. Эта частотная точка называется резонансной частотой кристаллов серии, а ниже ƒs кристалл является емкостным.

При увеличении частоты выше этой последовательной резонансной точки кристалл ведет себя как индуктор, пока частота не достигнет своей параллельной резонансной частоты ƒp. В этой частотной точке взаимодействие между последовательным индуктором Ls и параллельным конденсатором Cp создает параллельно настроенную цепь LC-емкости, и, таким образом, полное сопротивление поперек кристалла достигает своего максимального значения.

Тогда мы можем видеть, что кристалл кварца представляет собой комбинацию последовательных и параллельно настроенных резонансных контуров, колеблющихся на двух разных частотах с очень малой разницей между ними в зависимости от огранки кристалла. Кроме того, поскольку кристалл может работать как на последовательных, так и на параллельных резонансных частотах, схему кварцевого генератора необходимо настроить на одну или другую частоту, поскольку вы не можете использовать обе вместе.

Таким образом, в зависимости от характеристик схемы кристалл кварца может действовать как конденсатор, индуктор, последовательный резонансный контур или как параллельный резонансный контур, и чтобы продемонстрировать это более четко, мы также можем построить зависимость реактивного сопротивления кристаллов от частоты, как показано ниже.

Кристаллическая реактивность против частоты

Кристаллическая реактивность против частоты

Наклон реактивного сопротивления от частоты выше показывает, что последовательное реактивное сопротивление на частоте ƒs обратно пропорционально Cs, потому что ниже ƒs и выше ƒp кристалл кажется емкостным. Между частотами ƒs и ƒp кристалл кажется индуктивным, так как две параллельные емкости компенсируются.

Тогда формула для резонансной частоты ряда кристаллов ƒs имеет вид:

последовательная резонансная частота

Частота параллельного резонанса ƒp возникает, когда реактивное сопротивление последовательной ветви LC равно реактивному сопротивлению параллельного конденсатора Cp, и задается как:

Параллельная резонансная частота

Пример кварцевого генератора

Кристалл кварца имеет следующие значения: Rs = 6,4 ОмCs = 0,09972 пФ и Ls = 2,554 мГн. Если емкость на его клемме Cp измеряется при 28,68 пФ, рассчитайте основную частоту колебаний кристалла и его частоту вторичного резонанса.

Резонансная частота ряда кристаллов ƒ S

Резонансная частота ряда кристаллов

Параллельная резонансная частота кристалла ƒ P

Параллельная резонансная частота кристалла

Мы можем видеть, что разница между ƒs, основной частотой кристалла и ƒp невелика — около 18 кГц (10,005 МГц — 9,987 МГц). Однако в этом частотном диапазоне добротность Q (коэффициент качества) кристалла является чрезвычайно высокой, поскольку индуктивность кристалла намного выше, чем его емкостные или резистивные значения. Добротность нашего кристалла на последовательной резонансной частоте определяется как:

Добротность кристалла на последовательной резонансной частоте

Тогда Q нашего кристалла, например, около 25000, из — за этой высокой Х L / R отношение. Коэффициент добротности большинства кристаллов находится в диапазоне от 20000 до 200000 по сравнению с хорошей цепью бака с хорошей настройкой LC, которую мы рассматривали ранее, которая будет намного меньше 1000. Это высокое значение добротности также способствует большей стабильности частоты кристалла на его рабочей частоте, что делает его идеальным для построения схем кварцевого генератора.

Итак, мы видели, что кварцевый кристалл имеет резонансную частоту, аналогичную частоте электрической цепи LC-бака, но с намного более высоким добротностью. Это связано главным образом с его низким последовательным сопротивлением Rs. В результате кварцевые кристаллы делают превосходный выбор компонентов для использования в генераторах, особенно в генераторах очень высокой частоты.

Типичные кварцевые генераторы могут колебаться в диапазоне частот от примерно 40 кГц до более 100 МГц в зависимости от конфигурации их схемы и используемого усилительного устройства. Разрез кристалла также определяет его поведение, поскольку некоторые кристаллы будут вибрировать с более чем одной частотой, создавая дополнительные колебания, называемые обертонами.

Кроме того, если кристалл не имеет параллельной или однородной толщины, он может иметь две или более резонансных частот как с основной частотой, образующей так называемые, так и гармоники, такие как вторая или третья гармоники.

В целом, хотя основная частота колебаний для кварцевого кристалла намного более сильная или выраженная, чем у вторичных гармоник и вторичных гармоник вокруг него, так что это будет использоваться. На графиках выше мы видели, что схема эквивалентного кристалла имеет три реактивных компонента, два конденсатора и индуктор, поэтому есть две резонансные частоты, самая низкая — последовательная резонансная частота, а самая высокая — параллельная резонансная частота.

Мы видели в предыдущих уроках, что схема усилителя будет колебаться, если она имеет коэффициент усиления контура, больший или равный единице, и обратная связь положительна. В схеме кварцевого генератора генератор будет колебаться на основной параллельной резонансной частоте кристаллов, поскольку кристалл всегда хочет колебаться, когда на него подается источник напряжения.

Тем не менее, также возможно «настроить» кварцевый генератор на любую четную гармонику основной частоты (2-й, 4-й, 8-й и т.д.), и они обычно известны как гармонические генераторы, в то время как генераторы обертоновых колебаний вибрируют с нечетными кратными значениями основной частоты 3, 5, 11 и т.д.). Как правило, кварцевые генераторы, которые работают на обертонных частотах, используют их последовательные резонансные частоты.

Кварцевый генератор Колпитца

Цепи кварцевого генератора обычно строятся с использованием биполярных транзисторов или полевых транзисторов. Это связано с тем, что хотя операционные усилители могут использоваться во многих различных низкочастотных (≤100 кГц) осцилляторных схемах, операционные усилители просто не имеют полосы пропускания для успешной работы на более высоких частотах, подходящих для кристаллов выше 1 МГц.

Конструкция кварцевого генератора очень похожа на конструкцию генератора Колпитца, который мы рассматривали в предыдущем уроке, за исключением того, что схема резервуара LC, которая обеспечивает колебания обратной связи, была заменена кварцевым кристаллом, как показано ниже.

картинка-схема кварцевого генератора

Этот тип кварцевых генераторов разработан вокруг усилителя с общим коллектором (эмиттер-повторитель). Сеть резисторов R 1 и 2 устанавливает уровень смещения постоянного тока на базе, а эмиттерный резистор Eустанавливает уровень выходного напряжения. Резистор R 2 установлен как можно большим, чтобы предотвратить нагрузку на параллельно подключенный кристалл.

Транзистор 2N4265 представляет собой NPN-транзистор общего назначения, подключенный в конфигурации с общим коллектором, и способен работать на скоростях переключения, превышающих 100 МГц, значительно выше основной частоты кристаллов, которая может быть между 1 МГц и 5 МГц.

Вышеприведенная принципиальная схема контура генератора Колпитц-Кристалл показывает, что конденсаторы С1 и С2 шунтируют выход транзистора, что уменьшает сигнал обратной связи. Следовательно, коэффициент усиления транзистора ограничивает максимальные значения C1 и C2. Выходную амплитуду следует поддерживать низкой, чтобы избежать чрезмерного рассеивания мощности в кристалле, иначе он может разрушиться из-за чрезмерной вибрации.

Генератор Пирса

Другая распространенная конструкция кварцевого генератора — это модель Пирса. Генератор Пирса очень похож по конструкции на предыдущий генератор Колпитца и хорошо подходит для реализации схем кварцевого генератора, использующих кристалл как часть его цепи обратной связи.

Генератор Пирса — это, прежде всего, последовательный резонансно настроенный контур (в отличие от параллельного резонансного контура генератора Колпитца), который использует JFET для своего основного усилительного устройства, поскольку полевые транзисторы обеспечивают очень высокие входные импедансы с кристаллом, подключенным между стоком и затвором через конденсатор C1, так как показано ниже.

картинка-схема генератора Пирса

В этой простой схеме кристалл определяет частоту колебаний и работает на своей последовательной резонансной частоте, что дает путь с низким импедансом между выходом и входом. При резонансе наблюдается сдвиг фазы на 180 o , что делает обратную связь положительной. Амплитуда выходной синусоидальной волны ограничена максимальным диапазоном напряжения на выводе стока.

Резистор R1 управляет величиной обратной связи и возбуждением кристалла, в то время как напряжение на радиочастотном дросселе RFC меняется в течение каждого цикла. Большинство цифровых часов и таймеров используют генератор Пирса в той или иной форме, поскольку он может быть реализован с использованием минимума компонентов.

Наряду с использованием транзисторов и полевых транзисторов, мы также можем создать простой базовый параллельный резонансный кварцевый генератор, аналогичный по работе генератору Пирса, с использованием КМОП-инвертора в качестве элемента усиления. Основной кварцевый генератор состоит из одного инвертирующего логического элемента триггера Шмитта, такого как TTL 74HC19 или CMOS 40106, 4049, индуктивного кристалла и двух конденсаторов. Эти два конденсатора определяют величину емкости нагрузки кристаллов. Последовательный резистор помогает ограничить ток возбуждения в кристалле, а также изолирует выход инвертора от комплексного сопротивления, образованного конденсаторно-кристаллической сетью.

КМОП кристаллический генератор

КМОП кристаллический генератор

Кристалл колеблется на своей последовательной резонансной частоте. КМОП-инвертор изначально смещен в середину своей рабочей области резистором обратной связи R1. Это гарантирует, что точка Q инвертора находится в области высокого усиления. Здесь используется резистор со значением 1 МОм, но его значение не является критическим, если оно больше 1 МОм. Дополнительный инвертор используется для буферизации выходного сигнала генератора на подключенную нагрузку.

Инвертор обеспечивает 180 o фазового сдвига, а сеть кристаллических конденсаторов — дополнительные 180 o, необходимые для колебаний. Преимущество кварцевого генератора КМОП является то , что он всегда будет автоматически корректировать себя, чтобы поддерживать это 360 о фазовом сдвиге для колебаний.

В отличие от предыдущих кварцевых генераторов на транзисторной основе, которые генерировали синусоидальную форму выходного сигнала, поскольку генератор КМОП-инвертор использует цифровые логические элементы, выходной сигнал представляет собой прямоугольную волну, колеблющуюся между HIGH и LOW. Естественно, максимальная рабочая частота зависит от характеристик переключения используемого логического элемента.

Микропроцессорные кварцевые часы

Мы не можем закончить статью по кварцевым генераторам, не упомянув кое-что о микропроцессорных кварцевых часах. Практически все микропроцессоры, микроконтроллеры, PIC и процессоры, как правило, используют кварцевый генератор в качестве устройства определения частоты, чтобы генерировать их синхроимпульс, потому что, как мы уже знаем, кварцевые генераторы обеспечивают высочайшую точность и стабильность частоты по сравнению с резистором-конденсатором (RC) или индуктор-конденсатор, (LC) генераторы.

Тактовая частота процессора определяет, насколько быстро процессор может работать и обрабатывать данные с помощью микропроцессора, PIC или микроконтроллера с тактовой частотой 1 МГц, что означает, что он может обрабатывать данные внутренне один миллион раз в секунду за каждый тактовый цикл. Как правило, все, что нужно для получения тактовой формы сигнала микропроцессора, — это кристалл и два керамических конденсатора со значениями в диапазоне от 15 до 33 пФ, как показано ниже.

Микропроцессорный генератор

микропроцессорный генератор

Большинство микропроцессоров, микроконтроллеров и PIC имеют два вывода генератора, обозначенных OSC1 и OSC2, для подключения к внешней кварцевой кристаллической цепи, стандартной сети RC- генератора или даже керамическому резонатору. В микропроцессорных системах такого типа кварцевый генераторгенерирует последовательность непрерывных прямоугольных импульсов, основная частота которых контролируется самим кристаллом. Эта основная частота регулирует поток инструкций, управляющих процессором устройства. Например, мастер часов и системное время.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

comments powered by HyperComments
Оценки статьи:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)
Загрузка...